Prove that tanx/(1+secx)+(1+secx)/tanx=2secx?

2 Answers
Feb 23, 2016

It is not an identity. It cannot be verified.

Explanation:

The left side is not always equal to the right. For example at x=pi/6 the left side is 4 and the right side is (4sqrt3)/3

Feb 23, 2016

It should be tanx/(1+secx)+(1+secx)/tanx=2cscx. See proof below.

Explanation:

tanx/(1+secx)+(1+secx)/tanx!=2secx. It should rather be tanx/(1+secx)+(1+secx)/tanx=2cscx

Perhaps what you mean is to prove that tanx/(1+secx)+(1+secx)/tanx=2cscx. To solve this let us start from LHS and prove using other identities that this is equal to RHS.

tanx/(1+secx)+(1+secx)/tanx (let us first add them like fractions)

= (tan^2x+(1+secx)^2)/(tanx(1+secx) (expanding this)

= (tan^2x+1+sec^2x+2secx)/(tanx(1+secx)(using sec^2x=1+tan^2x)

= (sec^2x+sec^2x+2secx)/(tanx(1+secx) or

=(2sec^2x+2secx)/(tanx(1+secx) or

= (2secx(secx+1))/(tanx(1+secx)

Now, using secx=1/cosx and tanx=sinx/cosx

= 2secx/tanx =(2/cosx)/(sinx/cosx) (simplifying & using 1/sinx=cscx)

= (2/sinx) = 2cscx