1)
expands to
sin^2 (x/2) + cos^2(x/2) - 2sin (x/2)cos(x/2)sin2(x2)+cos2(x2)−2sin(x2)cos(x2)
= 1 - 2sin (x/2)cos(x/2) = 1 - sin x=1−2sin(x2)cos(x2)=1−sinx
2)
Expands to
(cot^2a-1)/ (csc^2a) = cos2acot2a−1csc2a=cos2a
(cos^2a/sin^2a-1)/ (csc^2a) = ((cos^2a - sin^2a)/sin^2a)/csc^2a cos2asin2a−1csc2a=cos2a−sin2asin2acsc2a
((cos^2a - sin^2a)/sin^2a)/(1/sin^2a) = cos^2a - sin^2a = cos 2acos2a−sin2asin2a1sin2a=cos2a−sin2a=cos2a
3)
tan 2a -1/ (cos2a tan2a−1cos2a
After bringing to common denominator and simplifying
(sin 2a)/(cos2a) -1/( cos2a sin2acos2a−1cos2a
(sin 2a -1)/( cos2a sin2a−1cos2a
(2sinacosa -sin^2a - cos ^2 a)/(cos^2 a - sin^ 2a 2sinacosa−sin2a−cos2acos2a−sin2a
Multiple both numerator and denominator by -1
(-2sinacosa +sin^2a + cos ^2 a)/(sin^ 2a - cos^2 a −2sinacosa+sin2a+cos2asin2a−cos2a
((sina - cosa)(sin a - cos a))/((sina + cosa) (sina - cos a))(sina−cosa)(sina−cosa)(sina+cosa)(sina−cosa)
(cancel((sina - cosa))(sin a - cos a))/((sina + cosa) cancel((sina - cos a))
(sina - cosa)/(sina + cosa)
Divide numerator and denominator by sina
(1 - cota)/(1 + cota)