How do you find the derivative of #f(x)= x^2 -5x + 3 # using the limit definition?

1 Answer
Apr 5, 2016

#lim_(Deltax->0) [f(x+Deltax) - f(x)]/(Deltax) #

#f'(x)=lim_(Deltax->0) [2x+Deltax-5]=2x-5#

Explanation:

Given: #f(x) = x^2-5x+3#

Required: Derivative using limits

Solution Strategy:
Definition: #(df(x))/(dx)=lim_(Deltax->0) [f(x+Deltax) - f(x)]/(Deltax)#
A) Evaluate #f(x)|_(x=x-Deltax)#
B) Subtract #f(x)# and simplify

A) #f(x)|_(x=x+Deltax)= (x+Deltax)^2-5(x+Deltax)+3#
# =cancelx^2+2xDeltax+Deltax^2-cancel(5x)- 5Deltax+cancel3#
# - cancelx^2+cancel(5x)-cancel3#

#f'(x)=lim_(Deltax->0) [2xcancel(Deltax)+cancel(Deltax^2)^(Deltax)-5cancel(Deltax)]/cancel(Deltax)#

#f'(x)=lim_(Deltax->0) [2x+Deltax-5]=2x-5#

Good luck!