How do you find the derivative of (3+sin(x))/(3x+cos(x))3+sin(x)3x+cos(x)?

1 Answer
May 20, 2016

Use quotient rule to obtain (f/g)'=(3xcosx-8)/(9x^2+6xcosx+cos^2x)

Explanation:

Quotient rule: (f/g)'=(f'g-g'f)/g^2
Let f=3+sinx; therefore f'=cosx
Let g=3x+cosx; therefore g'=3-sinx
(f/g)'=(f'g-g'f)/g^2
=[cosx(3x+cosx)-(3-sinx)(3+sinx)]/(3x+cosx)^2
=[(3xcosx+cos^2x)-(9-sin^2x)]/(9x^2+6xcosx+cos^2x)
=(3xcosx+sin^2x+cos^2x-9)/(9x^2+6xcosx+cos^2x)
Identity: sin^2x+cos^2x=1=>(f/g)'=(3xcosx-8)/(9x^2+6xcosx+cos^2x)