How do you solve the following equation #sin 2x - sin x = 0# in the interval [0, 2pi]?

2 Answers
Jun 20, 2016

Use the identity #sin2theta = 2sinthetacostheta#.

Explanation:

#2sinxcosx - sinx = 0#

#sinx(2cosx - 1) = 0#

#sinx = 0 and cosx = 1/2#

#0, pi, pi/3 and (5pi)/3#

Hopefully this helps!

Jun 20, 2016

The soln. set #={0,pi/3,pi,5pi/3,2pi}.#

Explanation:

Given that, #sin2x-sinx=0. rArr 2sinxcosx-sinx=0. rArr sinx(2cosx-1)=0. rArr sinx=0, or, cosx=1/2#

The zeros of sin are, #kpi, k in ZZ.# Since we require zeros in #[0,2pi]#, these are #0,pi,2pi.#

Next #cosx=1/2=cos(pi/3) rArr x=2kpi+-pi/3, k in ZZ.#This is since that the general soln. of the eqn. #costheta=cosalpha# is #theta=2kpi+-alpha, k in ZZ#.

#k=0, rArr x=+pi/3 in [0,2pi],# as #-pi/3!in[0,2pi]#
#k=1 rArr x=2pi-pi/3=5pi/3,# as #2pi+pi/3 !in [0,2pi].#

Altogether, the soln. set #={0,pi/3,pi,5pi/3,2pi}.#