Given Eqn. is #-1=(x+y)^2-xy-e^(3x+7y),# or,
#xy+e^(3x+4y)=(x+y)^2+1.#
Diff. both sides,
#(xy)'+{e^(3x+\color{red}{7}y)}'={(x+y)^2}'+0.#
#:. xy'+yx'+e^(3x+7y)(3x+7y)'=2(x+y)(x+y)'#
#:.xy'+y+e^(3x+7y){(3x)'+(7y)'}=2(x+y)(x'+y')#
#:. xy'+y+e^(3x+7y)(3+7y')=2(x+y)(1+y'),# i.e.,
#xy'+y+3e^(3x+4y)+7y'e^(3x+7y)=2(x+y)+2y'(x+y).#
#:. xy'+7y'e^(3x+7y)-2y'(x+y)=2(x+y)-y-3e^(3x+4y).#
#:. y'(x+7e^(3x+7y)-2x-2y)=2x+2y-y-3e^(3x+4y),# or,
#y'(7e^(3x+7y)-x-2y)=2x+y-3e^(3x+4y).#
Hence, #y'={2x+y-3e^(3x+7y)}/(7e^(3x+7y)-x-2y).#
#y'# can further be simplified, as below :-
For this, we write the given eqn. as #e^(3x+7y)=(x+y)^2+1-xy=x^2+xy+y^2+1,# & submit the value of e^(3x+7y)) in #y'# to give,
#y'={2x+y-3(x^2+xy+y^2+1)}/{4(x^2+xy+y^2+1)-x-2y}.#