sin^2 2x(cot^2x-tan^2x)=4cos2xsin22x(cot2x−tan2x)=4cos2x
=sin2x*sin2x(cot^2x-tan^2x)=sin2x⋅sin2x(cot2x−tan2x)
Using the double angle formula for sin and converting cot and tan to terms with sin and cos we now have
=4sin^2xcos^2x(cos^2x/sin^2x - sin^2x/cos^2x)=4sin2xcos2x(cos2xsin2x−sin2xcos2x)
=4sin^2xcos^2x((cos^4x-sin^4x) / (sin^2xcos^2x))=4sin2xcos2x(cos4x−sin4xsin2xcos2x)
=4sin^2xcos^2x((cos^2x +sin^2x)(cos^2x-sin^2x))/((sin^2xcos^2x))=4sin2xcos2x(cos2x+sin2x)(cos2x−sin2x)(sin2xcos2x)
=4sin^2xcos^2x((cos^2x-sin^2x)/(sin^2x*cos^2x))=4sin2xcos2x(cos2x−sin2xsin2x⋅cos2x) since cos^2x +sin^2x =1 cos2x+sin2x=1
=(4cos^4sin^2x - sin^4xcos^2x)/(sin^2xcos^2x)=4cos4sin2x−sin4xcos2xsin2xcos2x
=(4cancel(sin^2xcos^2x)(cos^2x-sin^2x))/(cancel(sin^2xcos^2x))
=4(cos^2x-sin^2x)
=4cos2x since cos^2x-sin^2x=cos2x