Since tan x=sinx/cosxtanx=sinxcosx, you can substitute:
tanx/cosx=(sinx/cosx)/cosx=sinx/cos^2xtanxcosx=sinxcosxcosx=sinxcos2x
Since cos^2x=1-sin^2xcos2x=1−sin2x, the given equation becomes:
sinx/(1-sin^2x)=2sinx1−sin2x=2
It is equivalent to:
sinx=2(1-sin^2x) and cosx!=0sinx=2(1−sin2x)andcosx≠0
2sin^2x+sinx-2=0 and x!=pi/2+kpi2sin2x+sinx−2=0andx≠π2+kπ
sinx=(-1+-sqrt(1+16))/4sinx=−1±√1+164
- Case when sin x < -1sinx<−1 can be dropped:
the solution
sinx=(-1-sqrt(17))/4<-1sinx=−1−√174<−1
the range of sin x is [-1;1] therefore
sinx=(-1+sqrt(17))/4sinx=−1+√174
x=sin^-1((-1+sqrt(17))/4)x=sin−1(−1+√174)