How do you solve tanx/cosx=2tanxcosx=2?

1 Answer

x=sin^-1((-1+sqrt(17))/4)x=sin1(1+174)

Explanation:

Since tan x=sinx/cosxtanx=sinxcosx, you can substitute:

tanx/cosx=(sinx/cosx)/cosx=sinx/cos^2xtanxcosx=sinxcosxcosx=sinxcos2x

Since cos^2x=1-sin^2xcos2x=1sin2x, the given equation becomes:

sinx/(1-sin^2x)=2sinx1sin2x=2

It is equivalent to:

sinx=2(1-sin^2x) and cosx!=0sinx=2(1sin2x)andcosx0

2sin^2x+sinx-2=0 and x!=pi/2+kpi2sin2x+sinx2=0andxπ2+kπ

sinx=(-1+-sqrt(1+16))/4sinx=1±1+164

  • Case when sin x < -1sinx<1 can be dropped:

the solution

sinx=(-1-sqrt(17))/4<-1sinx=1174<1

the range of sin x is [-1;1] therefore

  • The solution is

sinx=(-1+sqrt(17))/4sinx=1+174

x=sin^-1((-1+sqrt(17))/4)x=sin1(1+174)