We have: (cos^2x-sin^2x)/(cot^2x-tan^2x)cos2x−sin2xcot2x−tan2x
Start by writing tan and cot in terms of sin and cos
=(cos^2x-sin^2x)/((cos^2x)/(sin^2x)-sin^2x/cos^2x)=cos2x−sin2xcos2xsin2x−sin2xcos2x
=(cos^2x-sin^2x)/((cos^4x-sin^4x)/(sin^2xcos^2x))*(sin^2xcos^2x)/(sin^2xcos^2x)=cos2x−sin2xcos4x−sin4xsin2xcos2x⋅sin2xcos2xsin2xcos2x
=(cos^4xsin^2x-sin^4xcos^2x)/(cos^4x-sin^4x)=cos4xsin2x−sin4xcos2xcos4x−sin4x
=((sin^2xcos^2x)cancel((cos^2x-sin^2x)))/((cos^2x+sin^2x)cancel((cos^2x-sin^2x)))
=(sin^2xcos^2x)/1
=sin^2xcos^2x