How do you integrate #f(x)=(-x^2-2x)/((x^2+2)(x+7))# using partial fractions?

1 Answer
Sep 21, 2016

#-8/51ln(x^2+2) + (5sqrt2)/51arctan(x/sqrt2)-35/51ln abs(x+7)+C#

Explanation:

#(-x^2-2x)/((x^2+2)(x+7)) = (Ax+B)/(x^2+2)+C/(x+7)=#

#=((Ax+B)(x+7))/((x^2+2)(x+7))+(C(x^2+2))/((x^2+2)(x+7))=#

#= (Ax^2+7Ax+Bx+7B+Cx^2+2C)/((x^2+2)(x+7))=#

#= ((A+C)x^2 +(7A+B)x + 7B+2C)/((x^2+2)(x+7))#

#(-x^2-2x)/((x^2+2)(x+7)) = ((A+C)x^2 +(7A+B)x + 7B+2C)/((x^2+2)(x+7))#

#A+C = -1 => 7A+7C = -7#
#7A+B = -2#
#7B+2C=0#

#B-7C = 5 = > 7B-49C=35#
#7B+2C=0#

#51C=-35 => C = -35/51#

#B=5+7C = 5 - 245/51 = 10/51#

#A = -1-C = -1 +35/51 = -16/51#

#I = int (-x^2-2x)/((x^2+2)(x+7))dx = int (-16/51x+10/51)/(x^2+2)dx + int (-35/51)/(x+7)dx#

#I = -16/51int(xdx)/(x^2+2)+10/51intdx/(x^2+2)-35/51intdx/(x+7)#

#I = -16/51int (1/2d(x^2+2))/(x^2+2)+10/51int dx/(x^2+(sqrt2)^2)-35/51intdx/(x+7)#

#I = -8/51ln(x^2+2) + (5sqrt2)/51arctan(x/sqrt2)-35/51ln abs(x+7)+C#