How do you integrate (x^2-1)/(x^4-16)x21x416 using partial fractions?

1 Answer
Sep 21, 2016

3/32ln|(x-2)/(x+2)|+5/16arc tan(x/2)+C332lnx2x+2+516arctan(x2)+C.

Explanation:

Let I=int(x^2-1)/(x^4-16)dxI=x21x416dx.

Here, the Integrand (x^2-1)/(x^4-16)=(x^2-1)/((x^2-4)(x^2+4))x21x416=x21(x24)(x2+4)

=(y-1)/((y-4)(y+4)), where, y=x^2=y1(y4)(y+4),where,y=x2 We split the Integrand using the

Partial Fractions. So, let,

(y-1)/((y-4)(y+4))=A/(y-4)+B/(y+4), where, A,B in RR.

To find, A, &, B, we use Heavyside's Cover-up Method :-

A=[(y-1)/(y+4)]_(y=4)=(4-1)/(4+4)=3/8.

B=[(y-1)/(y-4)]_(y=-4)=(-4-1)/(-4-4)=5/8. Hence,

(y-1)/((y-4)(y+4))=(3/8)/(y-4)+(5/8)/(y+4). Letting, y=x^2,

(x^2-1)/(x^4-16)=(3/8)/(x^2-4)+(5/8)/(x^2+4). Therefore,

I=3/8int1/(x^2-2^2)dx+5/8int1/(x^2+2^2)dx

=3/8*1/(2*2)ln|(x-2)/(x+2)|+5/8*1/2arc tan(x/2)

:. I=3/32ln|(x-2)/(x+2)|+5/16arc tan(x/2)+C.

Enjoy Maths.!