Let I=int(x^2-1)/(x^4-16)dxI=∫x2−1x4−16dx.
Here, the Integrand (x^2-1)/(x^4-16)=(x^2-1)/((x^2-4)(x^2+4))x2−1x4−16=x2−1(x2−4)(x2+4)
=(y-1)/((y-4)(y+4)), where, y=x^2=y−1(y−4)(y+4),where,y=x2 We split the Integrand using the
Partial Fractions. So, let,
(y-1)/((y-4)(y+4))=A/(y-4)+B/(y+4), where, A,B in RR.
To find, A, &, B, we use Heavyside's Cover-up Method :-
A=[(y-1)/(y+4)]_(y=4)=(4-1)/(4+4)=3/8.
B=[(y-1)/(y-4)]_(y=-4)=(-4-1)/(-4-4)=5/8. Hence,
(y-1)/((y-4)(y+4))=(3/8)/(y-4)+(5/8)/(y+4). Letting, y=x^2,
(x^2-1)/(x^4-16)=(3/8)/(x^2-4)+(5/8)/(x^2+4). Therefore,
I=3/8int1/(x^2-2^2)dx+5/8int1/(x^2+2^2)dx
=3/8*1/(2*2)ln|(x-2)/(x+2)|+5/8*1/2arc tan(x/2)
:. I=3/32ln|(x-2)/(x+2)|+5/16arc tan(x/2)+C.
Enjoy Maths.!