How do you integrate x3x2(x+3)(x1)(x7) using partial fractions?

1 Answer
Sep 27, 2016

=34In(x+3)+112In(x1)73In(x7)

Explanation:

first ,ignore the integrate sign and do partial fraction of the function

x3x2(x+3)(x1)(x7)=Ax+3+Bx1+Cx7

x3x2=A(x1)(x7))+B(x+3)(x7))+C(x+3)(x1)

subtitute x=3

(3)3(3)2=A(31)(37)

327=A(4)(10)

30=40A

A=34

subtitute x=1

(1)3(1)2=B(1+3)(17)

2=B(4)(6)

2=24B

B=112

subtitute x=7

(7)3(7)2=C(7+3)(71)

7147=C(10)(6)

140=60C

C=73

x3x2(x+3)(x1)(x7)

=34(x+3)+112(x1)73(x7)

=341x+3+1121x1731x7

=34In(x+3)+112In(x1)73In(x7)