A triangle has corners at (2 , 1 )(2,1), (3 ,3 )(3,3), and (1 ,2 )(1,2). What is the radius of the triangle's inscribed circle?

1 Answer
Oct 2, 2016

Inradius=0.5097=0.5097

Explanation:

enter image source here

The radius of a triangle's inscribed circle is called inradius.

Inradius formula : r=2A/pr=2Ap, where AA = Area of the triangle and pp=perimeter of the triangle.

1) calculate d the distance between the corners of the triangles, use the distance formula :
d=sqrt((x2−x1)^2+(y2−y1)^2d=(x2x1)2+(y2y1)2

Given A(3,3), B(1,2),C(2,1)A(3,3),B(1,2),C(2,1)
=> AB=sqrt((1-3)^2+(2-3)^2)=sqrt(2^2+1^2)=sqrt5AB=(13)2+(23)2=22+12=5
=> AC=sqrt((1-3)^2+(2-3)^2)=sqrt(2^2+1^2)=sqrt5AC=(13)2+(23)2=22+12=5
=> BC=sqrt((2-1)^2+(1-2)^2)=sqrt(1^2+1^2)=sqrt2BC=(21)2+(12)2=12+12=2

perimeter p=AB+AC+BC=sqrt5+sqrt5+sqrt2=2sqrt5+sqrt2p=AB+AC+BC=5+5+2=25+2

Since AB=ACAB=AC, the triangle is isosceles.

Since triangle ABD is right-angled,
=> AD=sqrt((AB^2-(BD)^2)AD=(AB2(BD)2); (BD=(1/2)BC)(BD=(12)BC)
=> AD=sqrt((sqrt5)^2-(sqrt(2)/2)^2)=sqrt(5-2/4)=sqrt(9/2)=3/sqrt2AD= (5)2(22)2=524=92=32

Area of triangle A= (1/2)*AD*BC=(1/2)*(3/sqrt2)*sqrt2=3/2A=(12)ADBC=(12)(32)2=32

Inradius r=(2A)/p=(2*(3/2))/(2sqrt5+sqrt2)=0.5097r=2Ap=2(32)25+2=0.5097