How do you verify the identity 3sec2θtan2θ+1=sec6θtan6θ?

1 Answer
Oct 3, 2016

See below

Explanation:

3sec2θtan2θ+1=sec6θtan6θ

Right Side=sec6θtan6θ
=(sec2θ)3(tan2θ)3->use difference of two cubes formula

=(sec2θtan2θ)(sec4θ+sec2θtan2θ+tan4θ)

=1(sec4θ+sec2θtan2θ+tan4θ)

=sec4θ+sec2θtan2θ+tan4θ

=sec2θsec2θ+sec2θtan2θ+tan2θtan2θ

=sec2θ(tan2θ+1)+sec2θtan2θ+tan2θ(sec2θ1)

=sec2θtan2θ+sec2θ+sec2θtan2θ+sec2θtan2θtan2θ

=sec2θtan2θ+sec2θtan2θ+sec2θtan2θ+sec2θtan2θ

=3sec2θtan2θ+1

= Left Side