How do you verify the identity 3sec2θtan2θ+1=sec6θ−tan6θ? Trigonometry Trigonometric Identities and Equations Proving Identities 1 Answer Bdub Oct 3, 2016 See below Explanation: 3sec2θtan2θ+1=sec6θ−tan6θ Right Side=sec6θ−tan6θ =(sec2θ)3−(tan2θ)3->use difference of two cubes formula =(sec2θ−tan2θ)(sec4θ+sec2θtan2θ+tan4θ) =1⋅(sec4θ+sec2θtan2θ+tan4θ) =sec4θ+sec2θtan2θ+tan4θ =sec2θsec2θ+sec2θtan2θ+tan2θtan2θ =sec2θ(tan2θ+1)+sec2θtan2θ+tan2θ(sec2θ−1) =sec2θtan2θ+sec2θ+sec2θtan2θ+sec2θtan2θ−tan2θ =sec2θtan2θ+sec2θtan2θ+sec2θtan2θ+sec2θ−tan2θ =3sec2θtan2θ+1 = Left Side Answer link Related questions What does it mean to prove a trigonometric identity? How do you prove cscθ×tanθ=secθ? How do you prove (1−cos2x)(1+cot2x)=1? How do you show that 2sinxcosx=sin2x? is true for 5π6? How do you prove that secxcotx=cscx? How do you prove that cos2x(1+tan2x)=1? How do you prove that 2sinxsecx(cos4x−sin4x)=tan2x? How do you verify the identity: −cotx=sin3x+sinxcos3x−cosx? How do you prove that tanx+cosx1+sinx=secx? How do you prove the identity sinx−cosxsinx+cosx=2sin2x−11+2sinxcosx? See all questions in Proving Identities Impact of this question 2296 views around the world You can reuse this answer Creative Commons License