How do you prove csctheta/sintheta=csc^2thetacscθsinθ=csc2θ?

1 Answer
Oct 7, 2016

Easy! Just remember that 1/ sin theta = csc theta1sinθ=cscθ and you will find that csc theta / sin theta = csc^2 thetacscθsinθ=csc2θ

Explanation:

To prove that csc theta / sin theta = csc^2 thetacscθsinθ=csc2θ, we have to remember that csc theta = 1/ sin thetacscθ=1sinθ

Proof: csc theta / sin theta = csc^2 thetacscθsinθ=csc2θ

(1/ sin theta) / sin theta = csc^2 theta1sinθsinθ=csc2θ

1/ sin theta * 1/ sin theta = csc^2 theta1sinθ1sinθ=csc2θ

1/ sin^2 theta = csc^2 theta1sin2θ=csc2θ
So, csc^2 theta = csc^2csc2θ=csc2

There you go :)