Question #c070f

1 Answer
Oct 9, 2016

Using the double angle formulas and combing the fractions and simplifying the algebra

Explanation:

to prove
sec(2x)+tan(2x)=1+tan(x)1tan(x)

take LHS

sec(2x)+tan(2x)=1cos(2x)+2tan(x)1tan2(x)

=1cos2(x)sin2(x)+2tan(x)1tan2(x)

Divide every term of the first fraction by cos2(x)

=1cos2(x)cos2(x)cos2(x)sin2(x)cos2(x)+2tan(x)1tan2(x)

=sec2(x)1tan2(x)+2tan(x)1tan2(x)

=1+tan2(x)1tan2(x)+2tan(x)1tan2(x)

=1+2tan(x)+tan2(x)1tan2(x)

=(1+tan(x))2(1tan(x))(1+tan(x))

cancelling a (1+tan(x)) bracket

=1+tan(x)1tan(x)

as required.