What is the equation of the line tangent to f(x)=-x^2 + 7x - 1 at x=-1?

1 Answer
Oct 21, 2016

y=9x

Explanation:

The equation of the tangent in color(blue)"point-slope form" is.

color(red)(bar(ul(|color(white)(2/2)color(black)(y-y_1=m(x-x_1))color(white)(2/2)|)))
where m represents the slope and (x_1,y_1)" a point on the line"

We require to find m and (x_1,y_1)

Given f(x) then f'(a)=m_"tgt" where a is the x-coordinate of a point on f(x).

rArrf'(x)=-2x+7

and f'(-1)=-2(-1)+7=9=m_"tgt"

Substitute x = - 1 into f(x) to obtain coordinates of point on tangent.

f(-1)=-(-1)^2+7(-1)-1=-9

Using m=9" and " (x_1,y_1)=(-1,-9)

y+9=9(x+1)rArry+9=9x+9

rArry=9x" is the equation of the tangent"