How do you simplify cos(sin^-1 x)cos(sin1x)?

1 Answer
Oct 21, 2016

±sqrt (1-x^2)1x2

Explanation:

cos(sin^-1 x)cos(sin1x)
Let,
sin^-1x = thetasin1x=θ
=>sin theta = xsinθ=x
=>sin^2theta =x^2sin2θ=x2
=>1-cos^2theta = x^21cos2θ=x2
=>cos^2theta = 1-x^2cos2θ=1x2
=>cos theta =± sqrt (1-x^2) cosθ=±1x2
=>theta =cos^-1±sqrt(1-x^2)θ=cos1±1x2
Putting this,
cos(cos^-1±sqrt(1-x^2))cos(cos1±1x2)
=±sqrt(1-x^2)=±1x2

But sin^(-1)xsin1x is, by definition, in [-pi/2,pi/2][π2,π2] so cos(sin^-1x) >= 0cos(sin1x)0

so cos(sin^-1x) = sqrt(1-x^2)cos(sin1x)=1x2