How do you differentiate #y=(sin^-1(5x^2))^3#?

1 Answer
Nov 6, 2016

#\fracdydx=\frac{30x(arcsin(5x^2))^2}{\sqrt{1-5x^2}}#

Explanation:

The derivative of #\arcsin(u)# (or #sin^-1(u)#) is #\frac{1}{\sqrt{1-u^2}}\frac{du}dx#

So by using the chain rule,
#\fracdydx=3(arcsin(5x^2))^2\cdot\frac1{\sqrt{1-5x^2}}\cdot10x#

Which can be simplified to:
#\fracdydx=\frac{30x(arcsin(5x^2))^2}{\sqrt{1-5x^2}}#