How do you find (d^2y)/(dx^2) given y=(2x+5)^(-1/2)?

1 Answer
Nov 12, 2016

(d^2y)/(dx^2)=3/(2x+5)^(5/2)

Explanation:

To find the color(blue)"first derivative" dy/dx differentiate using the color(blue)"chain rule"

color(orange)"Reminder " color(red)(bar(ul(|color(white)(2/2)color(black)(dy/dx=(dy)/(du)xx(du)/(dx))color(white)(2/2)|)))to(A)

let u=2x+5rArr(du)/(dx)=2

and y=u^(-1/2)rArr(dy)/(du)=-1/2u^(-3/2)

substitute into (A) changing u back to x.

rArrdy/dx=-1/2u^(-3/2)xx2=-(2x+5)^(-3/2)

To find the color(blue)"second derivative "(d^2y)/(dx^2) repeat the process above on dy/dx using the color(blue)"chain rule"

u=2x+5rArr(du)/(dx)=2

y=-u^(-3/2)rArr(dy)/(du)=3/2u^(-5/2)

rArr(d^2y)/(dx^2)=3(2x+5)^(-5/2)=3/(2x+5)^(5/2)