How do you find (d^2y)/(dx^2) given y=(2x+5)^(-1/2)?
1 Answer
Nov 12, 2016
Explanation:
To find the
color(blue)"first derivative" dy/dx differentiate using thecolor(blue)"chain rule"
color(orange)"Reminder " color(red)(bar(ul(|color(white)(2/2)color(black)(dy/dx=(dy)/(du)xx(du)/(dx))color(white)(2/2)|)))to(A) let
u=2x+5rArr(du)/(dx)=2 and
y=u^(-1/2)rArr(dy)/(du)=-1/2u^(-3/2) substitute into (A) changing u back to x.
rArrdy/dx=-1/2u^(-3/2)xx2=-(2x+5)^(-3/2) To find the
color(blue)"second derivative "(d^2y)/(dx^2) repeat the process above ondy/dx using thecolor(blue)"chain rule"
u=2x+5rArr(du)/(dx)=2
y=-u^(-3/2)rArr(dy)/(du)=3/2u^(-5/2)
rArr(d^2y)/(dx^2)=3(2x+5)^(-5/2)=3/(2x+5)^(5/2)