What is the inverse equation of the function, #y= 3x-6#?

1 Answer

#f^-1(x)=1/3x+2#

Explanation:

Concept

#f^(-1)(x)# (inverse of #f(x)#) means to switch the #x# and #y# variables in the equation #f(x)#
This means #f^(-1)(x)=f(y)#

Solving

  • Given function #f(x)=3x-6#, then #f^(-1)(x)\rArr\color(indianred)(x=3y-6)#
  • We must isolate the #y# in #f^(-1)(x)# to get the proper form of the inverse.
    #x=3y-6#
    #x+6=3y#
    #x/\color(red)(3)+6/\color(red)(3)={\cancel(3)y}/\cancel(\color(red)(3))#
    #y=1/3x+2#

#f^-1(x) = 1/3x+2#