How do you find (dy)/(dx)dydx given x^2sinx+y^2cosy=1x2sinx+y2cosy=1?

1 Answer
Nov 22, 2016

(dy)/(dx)=-(x(2sinx+xcosx))/(y(2cosy-ysiny))dydx=x(2sinx+xcosx)y(2cosyysiny)

Explanation:

differentiate both sides with respect to ""x""x. For the terms on the " "LHS LHS the product rule will have to be employed twice.

d/(dx)(x^2sinx+y^2cosy)=d/(dx)(1)ddx(x2sinx+y2cosy)=ddx(1)

d/(dx)(x^2sinx)+d/(dx)(y^2cosy)=d/(dx)(1)ddx(x2sinx)+ddx(y2cosy)=ddx(1)

2xsinx+x^2cosx+2y(dy)/(dx)cosy+y^2(-siny)(dy)/(dx)=02xsinx+x2cosx+2ydydxcosy+y2(siny)dydx=0

now rearrange for ""(dy)/(dx)dydx

(dy)/(dx)(2ycosy-y^2siny)=-(2xsinx+x^2cosx)dydx(2ycosyy2siny)=(2xsinx+x2cosx)

(dy)/(dx)=-(x(2sinx+xcosx))/(y(2cosy-ysiny))dydx=x(2sinx+xcosx)y(2cosyysiny)