What is (-12z^6u^6 + 15z^6u^3) -: (-4z^4u^5)(12z6u6+15z6u3)÷(4z4u5)?

1 Answer
Dec 2, 2016

3z^2u -(15z^2)/(4u^23z2u15z24u2

Explanation:

The problem can also be written as:

frac{-12z^6u^6+15z^6u^3}{-4z^4u^5}12z6u6+15z6u34z4u5

Then divide each of the 2 terms in the numerator by the single term in the denominator:

frac{-12z^6u^6}{-4z^4u^5}+frac{15z^6u^3}{-4z^4u^5}12z6u64z4u5+15z6u34z4u5

First reduce the coeffiecients.

-12/-4= 3124=3 and (15)/-4=-15/4154=154

frac{3z^6u^6}{z^4u^5}-frac{15z^6u^3}{4z^4u^5}3z6u6z4u515z6u34z4u5

Now recall the exponent rule x^a/x^b=x^(a-b)xaxb=xab
If a>ba>b , put the variable in the numerator.
If a< ba<b , put the variable in the denominator.

3z^(6-4)u^(6-5)-frac{15z^(6-4)}{4u^(5-3)}3z64u6515z644u53

3z^2u -(15z^2)/(4u^23z2u15z24u2