How do you evaluate the definite integral #int (t^2-2) # from #[-1,1]#?

3 Answers
Dec 6, 2016

#-10/3#

Explanation:

You would simply apply The Fundamental Theorem of Calculus, Part II. This (simplified) states #int_a^bf(x)dx = F(b) - F(a)# where #F(x) = int f(x)dx#. Since #int (t^2-2) dt = t^3/3-2t# you can apply the theorem.

#int_-1^1(t^2-2)dt = 1^3/3-2(1)-((-1)^3/3-2(-1)) = 1/3-2+1/3-2 =2/3-4 = -10/3#

Dec 6, 2016

I have assumed that you are using the Fundamental Theorem of Calculus. If you are using the limit definition of definite integral,see another answer.

Explanation:

The integrand #f(t) = t^2-2# is an even function and we are integrating from #-a# to #a#.

Some instructors and some students appreciate the fact that for #f# an even function that is integrable on #[-a,a]#, we have

#int_-a^a f(x) dx = 2int_0^a f(x) dx#.

#int_-1^1 (t^2-2) dt = 2int_0^1(t^2-2) dt#

# = 2[t^3/3-2t]_0^1#

# = 2[1/3-2] = 2(-5/3) = -10/3#

Dec 6, 2016

If you are using a limit definition to do this, here is an answer.

Explanation:

Here is a limit definition of the definite integral. (I'd guess it's the one you are using.) I will use what I think is somewhat standard notation in US textbooks.

.#int_a^b f(x) dx = lim_(nrarroo) sum_(i=1)^n f(x_i)Deltax#.

Where, for each positive integer #n#, we let #Deltax = (b-a)/n#

And for #i=1,2,3, . . . ,n#, we let #x_i = a+iDeltax#. (These #x_i# are the right endpoints of the subintervals.)

I prefer to do this type of problem one small step at a time.

In this question, the variable name is #t#. We'll use that.

#int_-1^1 (t^2-2) dt#.

Find #Delta t#

For each #n#, we get

#Deltat = (b-a)/n = (1-(-1))/n = 2/n#

Find #t_i#

And #t_i = a+iDeltat = -1+i2/n = -1+(2i)/n#

Find #f(t_i)#

#f(t_i) = (t_i)^2+2 = (-1+(2i)/n)^2 - 2#

# = (1-(4i)/n +(4i^2)/n^2) - 2#

# = -1 - (4i)/n+(4i^2)/n^2#

Find and simplify #sum_(i=1)^n f(t_i)Deltat # in order to evaluate the sums.

#sum_(i=1)^n f(t_i)Deltat = sum_(i=1)^n ( -1 - (4i)/n+(4i^2)/n^2) 2/n#

# = sum_(i=1)^n( (-2)/n - (8i)/n^2+(8i^2)/n^3)#

# =sum_(i=1)^n ((-2)/n) - sum_(i=1)^n ((8i)/n^2) + sum_(i=1)^n ((8i^2)/n^3) #

# =(-2)/n sum_(i=1)^n (1) - 8/n^2 sum_(i=1)^n(i)+8/n^3 sum_(i=1)^n(i^2)#

Evaluate the sums

# = (-2)/n (n) -8/n^2((n(n+1))/2) +8/n^3 ((n(n+1)(2n+1))/6)#

(We used summation formulas for the sums in the previous step.)

Rewrite before finding the limit

#sum_(i=1)^n f(t_i)Deltax = (-2)/n (n) -8/n^2((n(n+1))/2) +8/n^3 ((n(n+1)(2n+1))/6)#

# = -2 -4((n(n+1))/n^2) +4/3 ((n(n+1)(2n+1))/n^3)#

Now we need to evaluate the limit as #nrarroo#.

#lim_(nrarroo) ((n(n+1))/n^2) = lim_(nrarroo) (n/n*(n+1)/n) = 1#

#lim_(nrarroo) ((n(n+1)(2n+1))/n^3) = lim_(nrarroo)(n/n * (n+1)/n * (2n+1)/n) = 2#

To finish the calculation, we have

#int_0^1 (t^2 -2) dt = lim_(nrarroo) (-2 -4((n(n+1))/n^2) +4/3 ((n(n+1)(2n+1))/n^3))#

# = -2-4(1)+4/3(2)#

# = -6+8/3 = (-18+6)/3 = -10/3#.