How do you simplify \sqrt { 225x ^ { 18} y ^ { 22} }?

2 Answers
Dec 11, 2016

15x^9y^11

Explanation:

Recall : sqrtx=x^(1/2), and sqrt(x^2)=(x^2)^(1/2)=x^(2*1/2)=x,

sqrt(225x^18y^22)=sqrt(15*15*x^18*y^22)=(15^2*x^18*y^22)^(1/2)
=15^(2*1/2)*x^(18*1/2)*y^(22*1/2)
=15*x^9*y^11

Dec 11, 2016

sqrt(225x^18y^22) = abs(15x^9y^11)

Explanation:

Note that:

225x^18y^22 = 15^2*(x^9)^2*(y^11)^2 = (15x^9y^11)^2

So 15x^9y^11 is a square root of 225x^18y^22.

We also find:

(-15x^9y^11)^2 = 225x^18y^22

So -15x^9y^11 is also a square root of 225x^18y^22.

Note that if a >= 0 then sqrt(a) denotes the non-negative square root.

So if, for example, x < 0 and y > 0 then 15x^9y^11 < 0 would be the wrong square root.

We can express that we want the non-negative square root by taking the modulus:

sqrt(225x^18y^22) = abs(15x^9y^11)