Question #d1bd3

1 Answer
Jan 3, 2017

Cross-multiply, equate real and imaginary parts, then eliminate R_1

Explanation:

Cross-multiply:
(R_1+j omega L)(R_4-j/(omega C))=R_2R_3
Multiply out left-hand side and group real and imaginary:

R_1R_4+(cancel(omega) L)/(cancel(omega) C) + j(omega L R_4 - R_1/(omega C))=R_3R_2+j0
Equate real parts: R_1R_4+L/C=R_3R_2 hence L=CR_3R_2-CR_1R_4
Equate imaginary parts: omega LR_4=R_1/(omega C) hence R_1=omega^2LCR_4
Substitute for R_1:
L=CR_3R_2-omega^2C^2LR_4^2
Collect L on left-hand side:
L(omega^2C^2R_4^2+1)=CR_2R_3
Hence:
L=(CR_2R_3)/(omega^2C^2R_4^2+1)