How do you evaluate #\frac { 2x } { x ^ { 2} - 25} - \frac { 1} { x - 5} = \frac { 1} { 6}#?

1 Answer
Jan 5, 2017

#x=1# is the only solution
#x=5# is an extraneous solution.

Explanation:

#(2x)/(x^2-25)-1/(x-5)=1/6#

multiply both sides by#(x^2-25)#

Note that #color(red)(x^2 - 25= (x+5)(x-5))#

#2x-color(red)((x+5)cancel((x-5)))/cancel((x-5))=(x^2-25)/6#

#2x-(x+5)=(x^2-25)/6#

multiply both sides by 6

#12x-6x-30=x^2-25#

#6x-30=x^2-25#

#6x-x^2+25-30 =0" "# (make a quadratic equal to 0)

#-x^2+6x-5=0#

#x^2-6x+5=0" "# make #+x^2#

#(x-5)(x-1)=0" "# find factors

#x=5 or x=1#

Check:
#x=5# will give : #(2x)/(x^2-25) rarr 10/0#

Division by 0 is not defined, so #x!=5#

#x = 1#

#(2(1))/(1^2-25)-1/(1-5)=1/6#

#(2(1))/(1-25)-1/(1-5)=1/6#

#cancel2^1/cancel(-24)^-12-1/(-4)=1/6#

#1/(-12)-1/(-4)=1/6#

#- 1/12+1/4=1/6#

#(-1+3)/12=1/6#

#cancel2^1/cancel12^6=1/6#

#1/6=1/6#