How do you evaluate \frac { 2x } { x ^ { 2} - 25} - \frac { 1} { x - 5} = \frac { 1} { 6}2xx2251x5=16?

1 Answer
Jan 5, 2017

x=1x=1 is the only solution
x=5x=5 is an extraneous solution.

Explanation:

(2x)/(x^2-25)-1/(x-5)=1/62xx2251x5=16

multiply both sides by(x^2-25)(x225)

Note that color(red)(x^2 - 25= (x+5)(x-5))x225=(x+5)(x5)

2x-color(red)((x+5)cancel((x-5)))/cancel((x-5))=(x^2-25)/6

2x-(x+5)=(x^2-25)/6

multiply both sides by 6

12x-6x-30=x^2-25

6x-30=x^2-25

6x-x^2+25-30 =0" " (make a quadratic equal to 0)

-x^2+6x-5=0

x^2-6x+5=0" " make +x^2

(x-5)(x-1)=0" " find factors

x=5 or x=1

Check:
x=5 will give : (2x)/(x^2-25) rarr 10/0

Division by 0 is not defined, so x!=5

x = 1

(2(1))/(1^2-25)-1/(1-5)=1/6

(2(1))/(1-25)-1/(1-5)=1/6

cancel2^1/cancel(-24)^-12-1/(-4)=1/6

1/(-12)-1/(-4)=1/6

- 1/12+1/4=1/6

(-1+3)/12=1/6

cancel2^1/cancel12^6=1/6

1/6=1/6