How do you solve the triangle given A=40, b=7, c=6?

1 Answer
Jan 13, 2017

angle B= 81°56'14'', a = 4.544, angle C=58°03'46''

Explanation:

Cosine rule:

a^2=b^2+c^2-2bc CosA

a^2=(7^2)+(6^2)-2 xx 7 xx 6 xx Cos40°

a^2=49+36-84 xx 0.766044443

a^2=85-64.34773322

a^2=20.65226678

a=sqrt20.65226678

a=4.544=BC

b^2=a^2+c^2-2ac CosB

b^2=(4.544)^2+6^2-2 xx 4.544 xx CosB

7^2=(4.544)^2+36-54.528 xx CosB

7^2=20.648+36-54.528 xx CosB

7^2=56.648-54.528 xx CosB

-54.528cosB=49-56.648

54.528CosB=56.648-49

CosB=7.648/54.528

CosB=0.140258216

angleB=81° 56’ 14’’

180°-(40°+81° 56' 14'')=58° 03' 46'' =angle C

Check:

(BC)/(Sin40)=6/(Sin58° 03’ 46’’)

BC=(6 xx Sin40°)/(Sin58° 03’ 46’’)

BC=3.856725658/0.848628208

BC=4.545=a