What is \lim _ { x \rightarrow 0^ { + } } \sqrt { x} \ln ( x ) ?

1 Answer
Jan 16, 2017

lim_(xto0^+)sqrt(x)ln(x)=0

Explanation:

Because ln(x)to-infty as xto0^+, x goes to zero from the right, we end up with an indeterminate form.

So, we have to manipulate it algebraically

Since x=1/(1/x), we can say

sqrt(x)ln(x)=ln(x)/(1/sqrt(x))=ln(x)/x^(-1/2)

Then we can use L'Hopital's Rule

lim_(xto0^+)sqrt(x)ln(x)=lim_(xto0^+)ln(x)/(x^(-1/2))=^(H)lim_(xto0^+)(1/x)/(-1/2x^(-3/2))
=lim_(xto0^+)(-2x^(3/2))/(x)=lim_(xto0^+)-2x^(1/2)=-2(0)=0