How do you solve \frac { 1} { 4} x ^ { 2} + 4x - 3= 014x2+4x3=0?

2 Answers
Feb 23, 2017

There are two answers:
x_1 = 2(-4+\sqrt(19)) x1=2(4+19)
x_2 = 2(-4-\sqrt(19)) x2=2(419)

Explanation:

Use delta formula:
The delta formula says:
ax^2+bx+c=0 => x= \frac{-b+-\sqrt(\Delta)}{2a}
where \Delta = b^2-4ac

and just put the values in the formula:
\Delta = 4^2-4\frac{1}{4}\times-3 = 16 + 3 = 19
and x will be:

x = \frac{-4+-\sqrt(19)}{2\times\frac{1}{4}} = 2(-4+-\sqrt(19))

There are two answers:
x_1 = 2(-4+\sqrt(19))
x_2 = 2(-4-\sqrt(19))

Feb 23, 2017

x=-8+2sqrt(19)color(white)("XX")orcolor(white)("XX")x=-8-2sqrt(19)

Explanation:

Given
color(white)("XXX")1/4x^2+4x-3=0

This becomes easier if we multiply both sides by 4 to get rid of the fraction:
color(white)("XXX")x^2+16x-12=0

We can then solve this using the quadratic equation or by completing the square method.

Completing the square

x^2+16x-12=0

color(white)("XXX")rarr x^2+16x=12

Noting that if x^2+16x are the first 2 terms of a squared binomial, then the third term must be (16/2)^2=8^2 (=64)
color(white)("XXX")rarr x^2+16x+8^2=12+64

color(white)("XXX")rarr (x+8)^2=76

color(white)("XXX")rarr x+8=+-sqrt(76)=+-2sqrt(19)

color(white)("XXX")rarr x=-8+-2sqrt(19)

Quadratic formula

ax^2+bx+c=0 rarr x=(-b+-sqrt(b^2+4ac))/(2a)

In this case
1x^2+16x-12=0 rarr x=(-16+-sqrt(16^2-4 * 1 * (-12)))/(2 * 1)

color(white)("XXXXXXXXXXXXXXX")=(-16+sqrt(304))/2

color(white)("XXXXXXXXXXXXXXX")=(-16+4sqrt(19))/2

color(white)("XXXXXXXXXXXXXXX")=-8+-2sqrt(19)