How do you solve #\frac { 9y + 8} { 4} = \frac { 3y + 5} { 2} + 7#?
2 Answers
Explanation:
hope that helped
:-)
Explanation:
To eliminate the fractions in the equation, multiply ALL terms on both sides by the
#color(blue)"lowest common multiple"# ( LCM ) of 4 and 2, the denominators of the fractions.The LCM of 4 and 2 is 4
#(cancel(4)^1xx(9y+8)/cancel(4)^1)=(cancel(4)^2xx(3y+5)/cancel(2)^1)+(4xx7)#
#rArr9y+8=2(3y+5)+28# distribute bracket.
#9y+8=6y+10+28#
#rArr9y+8=6y+38# subtract 6y from both sides.
#9y-6y+8=cancel(6y)cancel(-6y)+38#
#rArr3y+8=38# subtract 8 from both sides.
#3ycancel(+8)cancel(-8)=38-8#
#rArr3y=30# divide both sides by 3
#(cancel(3) y)/cancel(3)=30/3#
#rArry=10#
#color(blue)"As a check"# Substitute this value into the equation and if the left side equals the right side then it is the solution.
#"left side "=((9xx10)+8)/4=98/4=24.5#
#"right side "=((3xx10)+5)/2+7=35/2+7=24.5#
#rArry=10" is the solution"#