Question #68cf7

1 Answer
Mar 7, 2017

see below

Explanation:

Use the following Properties:

1. Quotient Property:
tan x = sinx /cos xtanx=sinxcosx

2. Pythagorean Property:
cos^2x + sin^2 x =1cos2x+sin2x=1

3. Double Argument Property
cos 2x = cos^2x-sin^2 xcos2x=cos2xsin2x

LEFT HAND SIDE:

(1-tan^2(x/2))/(1+tan^2(x/2)) = (1-sin^2(x/2)/cos^2(x/2))/(1+sin^2(x/2)/cos^2(x/2))1tan2(x2)1+tan2(x2)=1sin2(x2)cos2(x2)1+sin2(x2)cos2(x2)

=((cos^2(x/2)-sin^2(x/2))/cos^2(x/2))/((cos^2(x/2)+sin^2(x/2))/cos^2(x/2))=cos2(x2)sin2(x2)cos2(x2)cos2(x2)+sin2(x2)cos2(x2)

=(cos^2 (x/2)-sin^2(x/2))/(cos^2(x/2))*(cos^2(x/2))/(cos^2(x/2)+sin^2(x/2)=cos2(x2)sin2(x2)cos2(x2)cos2(x2)cos2(x2)+sin2(x2)

=(cos^2 (x/2)-sin^2(x/2))/cancel(cos^2(x/2))*cancel(cos^2(x/2))/(cos^2(x/2)+sin^2(x/2)

=(cos^2 (x/2)-sin^2(x/2))/(cos^2(x/2)+sin^2(x/2)

=(cos2(x/2))/1

=(coscancel2(x/cancel2))/1

= cos x

:.= RIGHT HAND SIDE