How do you differentiate #y=(x/e^x)Lnx#?

1 Answer
Mar 31, 2017

see below

Explanation:

Use the Product Rule and the Quotient Rule

#(fg)'=fg'+gf'#
#(f/g)' = (gf'-fg')/g^2#

#y=(x/e^x)lnx#

#color(red)(f=x/e^x), color(blue)( g=lnx#

#color(red)(f'=(e^x-xe^x)/e^(2x)), color(blue)( g'(x)=1/x#

#color(green)(y'=fg'+gf'#

#color(green)(y'=x/e^x*1/x+lnx*( e^x-xe^x)/e^(2x))#

#color(green)(y'=cancelx/e^x*1/cancelx+lnx*( e^x-xe^x)/e^(2x))#

#color(green)(y'=1/e^x+(lnx( e^x-xe^x))/e^(2x))#

#color(green)(y'=(e^x+lnx( e^x-xe^x))/e^(2x))#