What is the derivative of log_3((xsqrt(x-1))/2)log3(xx12)?

1 Answer
Mar 31, 2017

see below

Explanation:

Use the following Properties of Logarithm to expand the problem before taking derivatives.

  1. color(red)(log_b(xy)=log_bx+log_bylogb(xy)=logbx+logby
  2. color(red)(log_b(x/y)=log_bx-log_bylogb(xy)=logbxlogby
  3. color(red)(log_b x^n =n log_bxlogbxn=nlogbx

Use the formula color(red)(d/dx(log_bx)=1/(xln b)ddx(logbx)=1xlnb to find the derivative

y=log_3((xsqrt(x-1))/2)=log_3((x(x-1)^(1/2))/2)y=log3(xx12)=log3(x(x1)122)

y=log_3x+log_3(x-1)^(1/2)-log_3 2y=log3x+log3(x1)12log32

=log_3x+1/2 log_3(x-1)-log_3 2=log3x+12log3(x1)log32

color(blue)(y'=1/(xln3)+1/2 *1/(x-1)-0

color(blue)(y'=1/(xln3)+1/(2x-2)