What is the derivative of #log_3((xsqrt(x-1))/2)#?

1 Answer
Mar 31, 2017

see below

Explanation:

Use the following Properties of Logarithm to expand the problem before taking derivatives.

  1. #color(red)(log_b(xy)=log_bx+log_by#
  2. #color(red)(log_b(x/y)=log_bx-log_by#
  3. #color(red)(log_b x^n =n log_bx#

Use the formula #color(red)(d/dx(log_bx)=1/(xln b)# to find the derivative

#y=log_3((xsqrt(x-1))/2)=log_3((x(x-1)^(1/2))/2)#

#y=log_3x+log_3(x-1)^(1/2)-log_3 2#

#=log_3x+1/2 log_3(x-1)-log_3 2#

#color(blue)(y'=1/(xln3)+1/2 *1/(x-1)-0#

#color(blue)(y'=1/(xln3)+1/(2x-2)#