How do you differentiate log_3(9x^2sin(9x^2) ) log3(9x2sin(9x2))?

1 Answer
Mar 31, 2017

see below

Explanation:

Use the following Properties of Logarithm to expand the problem before taking derivatives.

  1. color(red)(log_b(xy)=log_bx+log_bylogb(xy)=logbx+logby
  2. color(red)(log_b(x/y)=log_bx-log_bylogb(xy)=logbxlogby
  3. color(red)(log_b x^n =n log_bxlogbxn=nlogbx

Then use the formula color(red)(d/dx(log_bx)=1/(xln b)ddx(logbx)=1xlnb to find the derivative

y=log_3(9x^2sin(9x^2))y=log3(9x2sin(9x2))

y=log_3 9 + log_3x^2+log_3 sin(9x^2)y=log39+log3x2+log3sin(9x2)

y=log_3 9 + 2 log_3x+log_3 sin(9x^2)y=log39+2log3x+log3sin(9x2)

color(blue)(y'=0+2/(xln3)+1/(sin(9x^2)ln3) * cos (9x^2)*18x

color(blue)(y'=2/(xln3)+(cos (9x^2)*18x)/(sin(9x^2)ln3)

color(blue)(y'=2/(xln3)+((18x) cot(9x^2))/ln3

color(blue)(y'=((18x^2) cot(9x^2))/(xln3)