How do you simplify #\frac { 9} { \sqrt { 21} }#?

3 Answers
Apr 3, 2017

#27/7#

Explanation:

Firstly, we have to get rid of the radical. To do that, we can #^2#(square) the entire fraction and then solve from there.

#(9/sqrt21)^2=(9*9)/(sqrt21)^2=81/21# ~(3 can be taken out)~ #=27/7#

Apr 3, 2017

#(3sqrt21)/7#

Explanation:

To eliminate the #sqrt21# from the denominator of the fraction we use a method called #color(blue)"rationalising"#

This ensures that we have a #color(blue)"rational"# denominator as opposed to a #color(blue)"surd".#

Consider #sqrt100xxsqrt100#

#sqrt100=10#

#rArrsqrt100xxsqrt100#

#=10xx10#

#=100larrcolor(red)" the value inside the root"#

#"in general " sqrtaxxsqrta=a#

#"Since " 9/sqrt21" is a fraction"# we multiply the numerator/denominator by #sqrt21#

#rArr9/sqrt21xxsqrt21/sqrt21#

#=(9xxsqrt21)/21larrcolor(red)" using above result"#

#=(cancel(9)^3xxsqrt21)/cancel(21)^7larrcolor(red)" cancelling by 3"#

#=(3sqrt21)/7#

Apr 5, 2017

#color(red)(=(3sqrt21)/7#

Explanation:

#9/sqrt21#

#:.=3^2/(sqrt3 xx sqrt7)#

#:.=3^2/(3^(1/2)sqrt7)#

#:.=3^(2-1/2)/sqrt7#

#:.=(3^(1 1/2))/(sqrt7)#

#:.=3^(3/2)/sqrt7#

#:.=root2(3^3)/sqrt7#

#:.=sqrt(3^3)/sqrt7#

Rationalize denominator by multiplying by #sqrt7/sqrt7#

#:.=(sqrt(3^3))/sqrt7 xx sqrt7/sqrt7#

#:.=sqrt3*sqrt3=3,sqrt7*sqrt7=7#

#:.=sqrt(3*3*3*7)/7#

#:.=(3sqrt(3*7))/7#

#:.color(red)(=(3sqrt21)/7#