Question #ec712

1 Answer
Apr 7, 2017

#d/dxtan^2x=2tanx*sec^2x#

#d/dxsec^2x=2sec^2xtanx#

Explanation:

#d/dxtan^2x#

Apply chain rule,

#r(u)^(r-1)*d/(du)#

=#2tanx*d/dx(tanx)#

#d/dxtanx=sec^2x# (common derivative)

Therefore the final answer is,

#d/dxtan^2x=2tanx*sec^2x#


#d/dxsec^2x#

Apply chain rule

#r(u)^(r-1)*d/(du)#

#2secx*d/(dx)secx#

#d/(dx)secx=secx*tanx# (common derivative)

Therefore the final answer is,

#d/dxsec^2x= 2secx*secx*tanx*#

Which simplifies to,

#d/dxsec^2x=2sec^2xtanx#