Question #80cb5

1 Answer
Apr 8, 2017

2xa3x3a3x3tan1(x32a3x3)3x+C

Explanation:

  1. Simplify powers

xa3x3dx

  1. Substitute u = x32 and du = 3x2

=231a3u2du

  1. Take a^3 out of the root

231a321u2a3du

  1. Factor out contsants

23a3211u2a3du

  1. Substitute r = ua32 and dr = a32 du

2311r2dr

  1. The integral of 11r2issin1(r)

=23sin1(s)+C

  1. Substitute back r and u

=23sin1(x32a32)+C

  1. Remove negative exponents

2xa3x3a3x3tan1(x32a3x3)3x+C