#sec 292.5 = sec (585/2) = 1/cos(585/2)#
Let us calculate #cos (585/2)#
#cos (585/2) = cos [(720-135)/2] = cos(360 - 135/2)#
# = cos(-135/2) = cos(135/2)#. ----------(1.)
Now,
#cos (x/2) = +-sqrt[(1+cosx)/2]#
#therefore cos(135/2) = +-sqrt[(1+cos135)/2]#
#cos 135 = cos (180 - 45) = -cos 45 = -1/sqrt2 = -0.71#
#=> cos(135/2) = +-sqrt[(1-0.71)/2]#
# = +- sqrt(0.29/2) = +-sqrt(.0145) = +-0.381#
but #135/2 = 67.5 < 90.# Hence #cos(135/2)# will be positive.
#therefore cos(135/2) = 0.381#
From (1.) #cos (585/2) = cos(135/2) = 0.381#
#=> sec 292.5 = sec (585/2) = 1/cos(585/2) = 1/.381 = color(red)2.625#
If you need help with the half angle formula, do comment below.