How do you find the sum of #( 5x ^ { 3} + 3x ^ { 2} - 5x + 4)# and # ( 8x ^ { 3} - 5x ^ { 2} + 8x + 9)#?

2 Answers
Apr 24, 2017

See the solution process below:

Explanation:

We can write the sum of these two terms as the expression:

#(5x^3 + 3x^2 - 5x + 4) + (8x^3 - 5x^2 + 8x + 9)#

We can find the sum by first removing all of the terms from parenthesis. Be careful to handle the signs of each individual term correctly:

#5x^3 + 3x^2 - 5x + 4 + 8x^3 - 5x^2 + 8x + 9#

Next, group like terms:

#5x^3 + 8x^3 + 3x^2 - 5x^2 - 5x + 8x + 4 + 9#

Now, combine like terms:

#(5 + 8)x^3 + (3 - 5)x^2 + (-5 + 8)x + (4 + 9)#

#13x^3 + (-2)x^2 + 3x + 13#

#13x^3 - 2x^2 + 3x + 13#

Apr 24, 2017

#(5x^3+3x^2−5x+4)+(8x^3−5x^2+8x+9)=#

#13x^3-2x^2+3x+13#

Explanation:

Remember you can only add common variables.
Like this,

#(5x^3+3x^2−5x+4)+(8x^3−5x^2+8x+9)#

#color(red)(5x^3)color(green)(+3x^2)color(blue)(−5x)+4color(red)(+8x^3)color(green)(−5x^2)color(blue)(+8x)+9#

Add and subtract the same colors
(See how they all have the same variables)

#color(red)(13x^3)color(green)(-2x^2)color(blue)(+3x)+13#

and you're done...

#(5x^3+3x^2−5x+4)+(8x^3−5x^2+8x+9)=#

#13x^3-2x^2+3x+13#