How do you multiply and simplify #\frac { 2a } { a ^ { 2} - 81} \cdot \frac { a - 9} { a }#?

1 Answer
Apr 25, 2017

#\frac { 2} { a+9)#

Explanation:

#\frac { 2a } { a ^ { 2} - 81} \cdot \frac { a - 9} { a }#

Instead of just multiplying across like we would with any pair of fractions, let's realize that #a^2-81# can be factored to simplify our multiplication.

Let's rewrite our problem like this...

#\frac { (2a)(a-9) } { (a ^ { 2} - 81)(a)#

Divide common terms #2a# and #a#

#\frac { 2cancela(a-9) } { (a ^ { 2} - 81)cancel(a)#

# (2(a-9) }/ { (a ^ 2 - 81)#

Now factor #a^2-81# as a #"Difference of perfect squares"#
Here is an awesome video if you are confused on how to factor difference of perfect squares.

#\frac { 2(a-9) } { (a+9)(a-9)#

Cancel out equal terms

#\frac { 2cancel((a-9)) } { (a+9)cancel((a-9))#

and our final answer is

#\frac { 2} { a+9)#