How do you multiply and simplify \frac { 2a } { a ^ { 2} - 81} \cdot \frac { a - 9} { a }2aa281a9a?

1 Answer
Apr 25, 2017

\frac { 2} { a+9)2a+9

Explanation:

\frac { 2a } { a ^ { 2} - 81} \cdot \frac { a - 9} { a }2aa281a9a

Instead of just multiplying across like we would with any pair of fractions, let's realize that a^2-81a281 can be factored to simplify our multiplication.

Let's rewrite our problem like this...

\frac { (2a)(a-9) } { (a ^ { 2} - 81)(a)(2a)(a9)(a281)(a)

Divide common terms 2a2a and aa

\frac { 2cancela(a-9) } { (a ^ { 2} - 81)cancel(a)

(2(a-9) }/ { (a ^ 2 - 81)

Now factor a^2-81 as a "Difference of perfect squares"
[Here is an awesome video if you are confused on how to factor difference of perfect squares.](https://www.khanacademy.org/math/algebra/polynomial-factorization/factoring-polynomials-3-special-product-forms/v/factoring-difference-of-squares)

\frac { 2(a-9) } { (a+9)(a-9)

Cancel out equal terms

\frac { 2cancel((a-9)) } { (a+9)cancel((a-9))

and our final answer is

\frac { 2} { a+9)