Recognise that #x^2+y^2=4^2# is a Pythagorean (Pythagoras) representation of a circle
#x^2+y^2=4^2" "..................Equation(1)#
#-x+y=1" "...................Equation(2)#
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#color(magenta)("Consider "Equation(2))#
Add #x# to both sides giving:
#y=x+1" "...............Equation(2_a)#
Using #Equation(2_a)# substitute for #y# in #Equation(1)#
#color(green)(x^2color(red)(+y^2)=4^2" "->" "x^2color(red)(+(x+1)^2)=16)" "..Equation(1_a)#
.............................................................................................
#color(magenta)("Consider "(x+1)^2)#
But #(x+1)^2->color(red)((x+1))color(blue)((x+1))#
Multiply everything inside the right bracket by everything inside the left bracket.
#color(red)(xcolor(blue)((x+1))" "+" "1color(blue)((x+1))#
#color(white)(.)x^2+x" "color(white)(.)+" "x+1#
#x^2+2x+1#
.....................................................................................
#color(magenta)("Putting it all together to determine "x)#
#Equation(1_a)# becomes:
#x^2+x^2+2x+1=16#
#2x^2+2x+1=16" "->" "2x^2+2x-15=0#
Using the standardised form #y=ax^2+bx+c#
where #x=(-b+-sqrt(b^2-4ac))/(2a)#
#a=2"; "b=2"; "c=-15#
#=>x=(-2+-sqrt((2)^2-4(2)(-15)))/(2(2))#
#x=-1/2+-sqrt(124)/4#
#x=-1/2+-sqrt(2^2xx31)/4" "->" "x=-1/2+-1/2sqrt(31)#
#x~~2.28388... and x~~-3.28388... #
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#color(magenta)("Determine "y" by substitution for "x" in "Equation(2_a))#
#y=x+1" "..............Equation(2_a)#
Set #x~~2.28388...#
#y~~3.28288...#
#ul(bar(|color(white)(2/2)"point "P_1->(x,y)=(2.28,3.28)" to 2 decimal places ")|)#
......................................................................................
Set #x~~-3.28388... #
#y~~-2.28288...#
#ul(bar(|color(white)(2/2)"point "P_2->(x,y)=(-3.28,-2.28)" to 2 decimal places "#