How do you simplify #(z ^ { - 4} \cdot x ^ { \frac { 3} { 5} } ) ^ { \frac { 1} { 3} }#?

1 Answer
May 6, 2017

#z^(-4/3)*x^(1/5)=root(5)x/(zroot(3)(z))#

Explanation:

Since #(a^b)^c=a^(bc)#, you would get:

#(z^-4*x^(3/5))^(1/3)=z^(-4/3)*x^(1/5)#

and, since #a^(m/n)=root(n)(a^m)#, you could write the equivalent expression:

#root(5)x/root(3)(z^4)=root(5)x/(zroot(3)(z))#