How to find the area of the loop of the curve x(x^2+y^2)=a(x^2-y^2)x(x2+y2)=a(x2y2)?

1 Answer
May 11, 2017

(a^2(4-pi))/2a2(4π)2

Explanation:

Converting to polar using x=rcosthetax=rcosθ and y=rsinthetay=rsinθ:

rcostheta(r^2cos^2theta+r^2sin^2theta)=a(r^2cos^2theta-r^2sin^2theta)rcosθ(r2cos2θ+r2sin2θ)=a(r2cos2θr2sin2θ)

r^3costheta(cos^2theta+sin^2theta)=ar^2(cos^2theta-sin^2theta)r3cosθ(cos2θ+sin2θ)=ar2(cos2θsin2θ)

Using cos^2theta+sin^2theta=1cos2θ+sin2θ=1:

r^3costheta=ar^2(cos^2theta-(1-cos^2theta))r3cosθ=ar2(cos2θ(1cos2θ))

r^3costheta-ar^2(2cos^2theta-1)=0r3cosθar2(2cos2θ1)=0

r^2(rcostheta-a(2cos^2theta-1))=0r2(rcosθa(2cos2θ1))=0

Note that r^2=0r2=0 is just the point (0,0)(0,0), so we're left with:

rcostheta=a(2cos^2theta-1)rcosθ=a(2cos2θ1)

r=a(2costheta-sectheta)r=a(2cosθsecθ)

The loop will begin and end when r=0r=0, which is when

2costheta=sectheta2cosθ=secθ

2cos^2theta=12cos2θ=1

costheta=pm1/sqrt2cosθ=±12

theta=pmpi/4θ=±π4

The area of a polar curve rr from theta=alphaθ=α to theta=betaθ=β is given by 1/2int_alpha^betar^2d theta12βαr2dθ, so here the integral for the area is:

1/2int_(-pi/4)^(pi/4)[a(2costheta-sectheta)]^2d theta12π4π4[a(2cosθsecθ)]2dθ

Since the loop is symmetric across the xx axis:

=int_0^(pi/4)a^2(2costheta-sectheta)^2d theta=π40a2(2cosθsecθ)2dθ

=a^2int_0^(pi/4)(4cos^2theta-4costhetasectheta+sec^2theta)d theta=a2π40(4cos2θ4cosθsecθ+sec2θ)dθ

Using cos^2theta=1/2(1+cos2theta)cos2θ=12(1+cos2θ):

=a^2int_0^(pi/4)(2(1+cos2theta)-4+sec^2theta)d theta=a2π40(2(1+cos2θ)4+sec2θ)dθ

=a^2int_0^(pi/4)(2cos2theta+sec^2theta-2)d theta=a2π40(2cos2θ+sec2θ2)dθ

Integrating term by term:

=a^2(sin2theta+tantheta-2theta)|_0^(pi/4)=a2(sin2θ+tanθ2θ)π40

=a^2(sin(pi/2)+tan(pi/4)-pi/2)-a^2(sin0+tan0-0)=a2(sin(π2)+tan(π4)π2)a2(sin0+tan00)

=a^2(1+1-pi/2)=a2(1+1π2)

=(a^2(4-pi))/2=a2(4π)2