How to find the area of the loop of the curve x(x^2+y^2)=a(x^2-y^2)x(x2+y2)=a(x2−y2)?
1 Answer
Explanation:
Converting to polar using
rcostheta(r^2cos^2theta+r^2sin^2theta)=a(r^2cos^2theta-r^2sin^2theta)rcosθ(r2cos2θ+r2sin2θ)=a(r2cos2θ−r2sin2θ)
r^3costheta(cos^2theta+sin^2theta)=ar^2(cos^2theta-sin^2theta)r3cosθ(cos2θ+sin2θ)=ar2(cos2θ−sin2θ)
Using
r^3costheta=ar^2(cos^2theta-(1-cos^2theta))r3cosθ=ar2(cos2θ−(1−cos2θ))
r^3costheta-ar^2(2cos^2theta-1)=0r3cosθ−ar2(2cos2θ−1)=0
r^2(rcostheta-a(2cos^2theta-1))=0r2(rcosθ−a(2cos2θ−1))=0
Note that
rcostheta=a(2cos^2theta-1)rcosθ=a(2cos2θ−1)
r=a(2costheta-sectheta)r=a(2cosθ−secθ)
The loop will begin and end when
2costheta=sectheta2cosθ=secθ
2cos^2theta=12cos2θ=1
costheta=pm1/sqrt2cosθ=±1√2
theta=pmpi/4θ=±π4
The area of a polar curve
1/2int_(-pi/4)^(pi/4)[a(2costheta-sectheta)]^2d theta12∫π4−π4[a(2cosθ−secθ)]2dθ
Since the loop is symmetric across the
=int_0^(pi/4)a^2(2costheta-sectheta)^2d theta=∫π40a2(2cosθ−secθ)2dθ
=a^2int_0^(pi/4)(4cos^2theta-4costhetasectheta+sec^2theta)d theta=a2∫π40(4cos2θ−4cosθsecθ+sec2θ)dθ
Using
=a^2int_0^(pi/4)(2(1+cos2theta)-4+sec^2theta)d theta=a2∫π40(2(1+cos2θ)−4+sec2θ)dθ
=a^2int_0^(pi/4)(2cos2theta+sec^2theta-2)d theta=a2∫π40(2cos2θ+sec2θ−2)dθ
Integrating term by term:
=a^2(sin2theta+tantheta-2theta)|_0^(pi/4)=a2(sin2θ+tanθ−2θ)∣∣π40
=a^2(sin(pi/2)+tan(pi/4)-pi/2)-a^2(sin0+tan0-0)=a2(sin(π2)+tan(π4)−π2)−a2(sin0+tan0−0)
=a^2(1+1-pi/2)=a2(1+1−π2)
=(a^2(4-pi))/2=a2(4−π)2