How do you use the binomial series to expand (x + 3)^6(x+3)6?

1 Answer
May 14, 2017

x^6 + 18x^5 + 135x^4 + 540x^3 + 1215x^2 + 1458x +729 x6+18x5+135x4+540x3+1215x2+1458x+729

Explanation:

The binomial series gives you :
(a+b)^6 = a^6 + 6a^5b + 15a^4b^2 + 20a^3b^3 + 15a^2b^4 + 6ab^5 +b^6 (a+b)6=a6+6a5b+15a4b2+20a3b3+15a2b4+6ab5+b6

Substitute a and b by x and 3 and you get:

(x+3)^6 = x^6 + 18x^5 + 135x^4 + 540x^3 + 1215x^2 + 1458x +729 (x+3)6=x6+18x5+135x4+540x3+1215x2+1458x+729