How do you differentiate f(x)=sin2(lnx)xcos2(x2) using the chain rule?

1 Answer
May 15, 2017

#=-4x^2sin^2(lnx)sin(x^2)cos(x^2)+sin^2(lnx)cos^2(x^2)+xsin(2lnx)cos^2(x^2)

Explanation:

=[sin2(lnx)][ddx(xcos2(x2))]+[ddx(sin2(lnx))][xcos2(x2)]
=[sin2(lnx)][(x)(ddx(cos2(x2)))+(1)(cos2(x2))]+[2sin(lnx)cos(lnx)x][cos2(x2)]
=[sin2(lnx)][(x)(2sin(x2)cos(x2)(2x))+cos2(x2)]+[sin(2lnx)cos2(x2)]
=4x2sin2(lnx)sin(x2)cos(x2)+sin2(lnx)cos2(x2)+xsin(2lnx)cos2(x2)

The chain rule is very messy here but this should guide you:
For sin2(lnx), differentiate the quadratic term, triginometric term, ln term and lastly the x term.

For xsin2(x2) Use Product Rule to separate x. Differentiate the quadratic term, then the trigonometric term then the inside (x2) term.
ddx[cos2(x2)]2cos(x2)2cos(x2)sin(x2)4xsin(x2)cos(x2)