What is the equation of the line tangent to f(x)=e^xsinx/x at x=pi/3?

1 Answer
May 15, 2017

(y-2.35564)=1.46682(x-pi/3)

Explanation:

d/dx[(e^xsin(x))/x]=((d/dx[e^xsin(x)])(x)-(1)(e^xsin(x)))/x^2=(e^x(sin(x)+cos(x))(x)-e^xsin(x))/x^2=(e^x xsin(x)+e^x xcos(x)-e^xsin(x))/x^2->

Substitute pi/3 in the derivative, m=1.46682

Substitute pi/3 in the original function

f(pi/3)=(e^(pi/3)sin(pi/3))/(pi/3)=2.35564

Putting it all together:
(y-2.35564)=1.46682(x-pi/3)