How do you find the area bounded by #x=8+2y-y^2#, the y axis, y=-1, and y=3?

1 Answer
May 16, 2017

#64/3#

Explanation:

First find the integral of the function:
#int(8+2y-y^2)dy = -1/3y^3+y^2 +8y#

There are three intervals that you should solve that is #[-3,-2],[-2,0],[0,1]#.
The problem of plugging #-3# directly into the integral would subtract the area the left of the #-2# root.

(1)#int[-2,0]#
#=8(-2)+(-2)^2-1/3(-2)^3=abs(-28/3)=28/3#

(2)#int[-3,-2]=int[-3,0]-int[-2,0]#
#=8(-3)+(-3)^2-1/3(-3)^3-(-28/3)=-6-(-28/3)=10/3#

(3)#int[0,1]#
#=8(1)-(1)^2-1/3(1)^3=26/3#

Adding all together:
#28/3+10/3+26/3=64/3#