What is the equation of the line tangent to #f(x)=x tan2x # at #x=pi/8#?

1 Answer
May 17, 2017

#y=(pi/2+1)(x-pi/8)+pi/8#

Explanation:

Product Rule:
#f'(x) =(1) (tan(2x))+(x) (d/dx[tan(2x)])#
#f'(x) =tan(2x)+(x) [(2sec^2(2x)]#
#f'(x) =tan(2x)+2x sec^2(x)#

Evaluate the slope when #x=pi/8#
#f'(pi/8)=tan(2(pi/8))+2(pi/8)sec^2(2(pi/8))#
#m=1+pi/2#

Evaluate the function when #x=pi/8#
#f(x)=xtan(2x)=(pi/8)tan(2(pi/8))=pi/8#

Putting it all together:
#y-y_1=m(x-x_1)#
#y-pi/8=(pi/2+1)(x-pi/8)#
#y=(pi/2+1)(x-pi/8)+pi/8#