Question #b31ec

1 Answer
May 18, 2017

f'(x)=(1+ln(x)-xln(5)ln(x))/5^x

Explanation:

This problem can still be simplified for easier differentiating.

Using the Change of Base Formula:

log_5(x)=ln(x)/ln(5)

This simplifies to:
(x(ln5)(lnx/ln5))/5^x=(xlnx)/5^x

Applying the Quotient Rule:

f'(x)=((d/dx[xlnx])5^x-(d/dx[5^x])xlnx)/(5^x)^2
f'(x)=([(x)(1/x)+1(lnx)]5^x-(5^xln5)(xlnx))/5^(2x)
f'(x)=(1+ln(x)-xln(5)ln(x))/5^x